Subscribe to the newsletter

Publication — IRIC

Regulation of Karyopherin α1 and Nuclear Import by Mammalian Target of Rapamycin.

Under conditions of reduced mitogen or nutritional substrate levels, the serine/threonine kinase target of rapamycin can augment the nuclear content of distinct transcription factors and promote the induction of stress response genes. In its latent (i.e., unphosphorylated) form, the transcription factor STAT1 regulates a subset of genes involved in immune modulation and apoptosis. Based on previous work indicating a functional relationship between mammalian target of rapamycin (mTOR) and the nuclear content of latent STAT1, we investigated the mechanism by which mTOR controls STAT1 nuclear import. By fluorescence confocal microscopy, inactivation of mTOR with rapamycin promoted the nuclear translocation of unphosphorylated STAT1, but not that of a STAT1 mutant incapable of binding its nuclear import adaptor karyopherin-α1 (KPNA1). By immunoprecipitation, KPNA1 was physically associated with mTOR and STAT1 in a complex that translocated to the nucleus in response to rapamycin. Although mTOR is not a kinase for KPNA1, the mTOR-associated phosphatase protein phosphatase 2A catalytic interacted directly with KPNA1 and regulated nuclear import of the mTOR-KPNA1 complex. KPNA1, or its interaction with STAT1, was required for the nuclear import of latent STAT1, transcriptional induction of the STAT1 gene, and caspase-3 activation under conditions of reduced mTOR activity (i.e. rapamycin, glucose starvation, serum withdrawal). Therefore, at low mitogen or nutrient levels, mTOR and protein phosphatase 2A catalytically control the constitutive nuclear import of latent STAT1 by KPNA1, which are key modulators of STAT1 expression and apoptosis.

Publication date
April 27, 2012
Principal Investigators
Fielhaber JA, Tan J, Joung KB, Attias O, Huegel S, Bader M, Roux PP, Kristof AS
PubMed reference
J. Biol. Chem. 2012;287(18):14325-35
PubMed ID
22399302
Affiliation
From the Critical Care and Respiratory Divisions and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada.