Publication — IRIC

Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells.

Most G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.

Date de publication
15 octobre 2020
Chercheurs
Møller TC, Pedersen MF, van Senten JR, Seiersen SD, Mathiesen JM, Bouvier M, Bräuner-Osborne H
Référence PubMed
Sci Rep 2020;10(1):17395
ID PubMed
33060647
Affiliation
Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark. thor.moller@sund.ku.dk.