Inscription à l’infolettre

Publication — IRIC

Sustained ERK1/2 signaling is necessary for follicular rupture during ovulation in mice.

Abolition of the LH-induced ERK1/2 pathway leads to dramatic changes in gene expression in granulosa cells, subsequently abrogating ovulation. Here we explored whether sustained ERK1/2 signaling beyond immediate-early hours of the LH surge is important for ovulation in mice. First, we examined the effect of inhibition of ERK1/2 activity at 4 h after hCG stimulation on ovulation in superovulated immature mice. Treatment with the ERK1/2 pathway inhibitor PD0325901 at 4 h post-hCG disrupted follicular rupture without altering cumulus expansion, oocyte meiotic maturation and luteinization. Profiling the expression pattern of genes of the RSK family of ERK1/2 signal mediators revealed that RSK3, but not other isoforms, was induced by hCG treatment. Further, RSK3-knockout mice were sub-fertile with reduced ovulation rate and smaller litter size compared to WT mice. Given that PD0325901 inhibits all mediators of ERK1/2 signaling, we chose to evaluate the gene expression underlying deficient follicular rupture in ERK1/2 inhibited mice. We found that inhibition of ERK1/2 signaling at 4 h post-hCG resulted in an imbalance in the expression of genes involved in extracellular matrix degradation and leukocyte infiltration necessary for follicular rupture. In conclusion, our data demonstrate that sustained ERK1/2 signaling during ovulation is not required for cumulus expansion, oocyte meiotic maturation and luteinization, but is required for follicular rupture.

Date de publication
1er février 2021
Madogwe E, Schuermann Y, Siddappa D, Bordignon V, Roux PP, Duggavathi R
Référence PubMed
Reproduction 2021;161(2):183-193
ID PubMed
Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.