Subscribe to the newsletter

Publication

A senescence restriction point acting on chromatin integrates oncogenic signals.

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.

Publication date
April 2, 2024
Principal Investigators
Lopes-Paciencia S, Bourdeau V, Rowell MC, Amirimehr D, Guillon J, Kalegari P, Barua A, Quoc-Huy Trinh V, Azzi F, Turcotte S, Serohijos A, Ferbeyre G
PubMed reference
Cell Rep 2024;43(4):114044
PubMed ID
38568812
Affiliation
Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.