Subscribe to the newsletter

Publication

Single-Molecule Reaction Chemistry in Patterned Nanowells.

A new approach to synthetic chemistry is performed in ultraminiaturized, nanofabricated reaction chambers. Using lithographically defined nanowells, we achieve single-point covalent chemistry on hundreds of individual carbon nanotube transistors, providing robust statistics and unprecedented spatial resolution in adduct position. Each device acts as a sensor to detect, in real-time and through quantized changes in conductance, single-point functionalization of the nanotube as well as consecutive chemical reactions, molecular interactions, and molecular conformational changes occurring on the resulting single-molecule probe. In particular, we use a set of sequential bioconjugation reactions to tether a single-strand of DNA to the device and record its repeated, reversible folding into a G-quadruplex structure. The stable covalent tether allows us to measure the same molecule in different solutions, revealing the characteristic increased stability of the G-quadruplex structure in the presence of potassium ions (K(+)) versus sodium ions (Na(+)). Nanowell-confined reaction chemistry on carbon nanotube devices offers a versatile method to isolate and monitor individual molecules during successive chemical reactions over an extended period of time.

Publication date
juillet 13, 2016
Principal Investigators
Bouilly D, Hon J, Daly NS, Trocchia S, Vernick S, Yu J, Warren S, Wu Y, Gonzalez RL, Shepard KL, Nuckolls C
PubMed reference
Nano Lett. 2016;16(7):4679-85
PubMed ID
27270004
Affiliation
Department of Chemistry, Columbia University , 3000 Broadway, New York, New York 10027 United States.